В 2018 году Франсис Арнольд на свой лекции по случаю вручения Нобелевской премии по химии заявила, что на тот момент наука позволяла читать, записывать и редактировать любые последовательности ДНК, но не создавать их. Сегодня это утверждение утратило свою актуальность.
С тех пор научно-технический прогресс достиг такого уровня, что искусственный интеллект научился составлять ДНК, а с помощью генетически модифицированных бактерий учёные уже близки к разработке и созданию новых белков. Цель заключается в том, чтобы с помощью возможностей ИИ и генного редактирования модифицировать бактерии, превращая их в мини-фабрики по производству белков, способных сокращать выбросы парниковых газов, разлагать пластик или выступать в качестве специфических пестицидов.
Генетическое секвенирование позволило детально изучить структуру и функции ДНК и РНК, которые являются носителями наследственной информации. Важность белков в организме человека сложно переоценить: они составляют 75 процентов сухой массы тела и участвуют в формировании мышц, ферментов, гормонов, крови, волос и хрящей. Понимание белков – это ключ к пониманию биологии.
Проект ” Геном человека “, завершённый в 2003 году, стал важным этапом в генетике, полностью расшифровав геном человека, содержащий около 3 миллиардов пар оснований и 20-25 тысяч генов. Однако, изучение функций большинства белков и устранение их нарушений оставалось сложной задачей.
Форма каждого белка имеет решающее значение для его функции и определяется последовательностью его аминокислот, которая, в свою очередь, определяется нуклеотидной последовательностью гена. Неправильно свернутые белки имеют неправильную форму и могут вызывать такие заболевания , как нейродегенеративные заболевания, муковисцидоз и диабет 2 типа. Понимание этих заболеваний и разработка методов лечения требуют знания формы белков.
До 2016 года единственным способом определения формы белка была рентгеновская кристаллография – лабораторная техника, которая использует дифракцию рентгеновских лучей на отдельных кристаллах для определения точного расположения атомов и молекул в трех измерениях в молекуле. На тот момент структура около 200 000 белков была определена с помощью кристаллографии, что стоило миллиарды долларов.
AlphaFold, программа машинного обучения , использовала эти кристаллические структуры в качестве обучающего набора для определения формы белков по их нуклеотидным последовательностям. И менее чем за год программа рассчитала белковые структуры всех 214 миллионов генов, которые были секвенированы и опубликованы. Все белковые структуры, определенные AlphaFold, были опубликованы в свободно доступной базе данных .
Прорывом в генной инженерии стало развитие технологии
В последнее время CRISPR широко используется в научных исследованиях и биотехнологиях для редактирования генов. Это открыло новые возможности в областях медицины, сельского хозяйства и биологии, включая разработку генной терапии для лечения наследственных заболеваний, создание устойчивых к вредителям культур и многое другое. CRISPR представляет собой революционный инструмент в области генетической инженерии благодаря своей точности, эффективности и относительной доступности.