Современные модели искусственного интеллекта (ИИ), использующие миллиарды обучаемых параметров, сталкиваются с проблемой огромных затрат на обучение и развертывание. Модели требуют значительного объема памяти и вычислительных мощностей, доступных только в огромных дата-центрах, потребляющих электроэнергию, сравнимую с потребностями целых городов.
Исследовательское сообщество активно ищет способы оптимизации как вычислительного оборудования, так и алгоритмов машинного обучения для поддержания темпов развития ИИ. Одним из перспективных направлений является оптическая реализация архитектур нейронных сетей, что позволяет существенно снизить потребление энергии.
В новом исследовании, опубликованномв журнале Advanced Photonics, демонстрируется использование распространения света в многомодовых волокнах (multimode fiber, MMF) с небольшим числом программируемых параметров для достижения такой же эффективности в задачах классификации изображений, как у полностью цифровых систем в более чем 100 раз большим числом параметров. Такой подход сокращает требования к памяти и уменьшает необходимость в энергоемких вычислительных процессах, сохраняя при этом высокую точность в различных задачах машинного обучения.
Схема эксперимента по программированию оптического распространения для вычислительной задачи.
Пространственный модулятор света (spatial light modulator, SLM) модулирует лазерные импульсы с помощью образца данных, наложенного на фиксированный шаблон программирования. Пучок соединен с многомодовым волокном. Узор после распространения фиксируется камерой. Обучаемый уровень классификации выходных данных вычисляет точность задачи, которая передается обратно в суррогатный алгоритм оптимизации. Алгоритм повышает производительность задачи, исследуя различные параметры программирования и уточняя потенциальные решения.
Основой работы является точный контроль сверхкоротких импульсов в многомодовых волокнах с помощью техники формирования волнового фронта. Такой метод позволяет осуществлять нелинейные оптические вычисления с использованием микроватт средней оптической мощности, что является важным шагом в реализации потенциала оптических нейронных сетей.
Ученые обнаружили, что с помощью небольшой группы параметров можно выбрать определенный набор весов модели из ‘банка весов’ (
В более широких оптических системах банк весов используется для хранения и переключения между разными коэффициентами, определяющими обработку сигналов. Это позволяет оптимизировать системы для разных приложений, от обработки изображений до фотонных вычислений, объединяя принципы машинного обучения с оптическими технологиями для эффективной обработки данных.