Суперзрение в смартфоне: чип позволяет видеть сквозь стены и картон

Исследователи разработали революционную технологию, позволяющую заглянуть внутрь объектов, не прибегая к вредному рентгеновскому излучению. Крошечный чип, который можно встроить в смартфон, способен делать снимки предметов через картон и другие непрозрачные материалы. Это новшество приближает нас к возможностям “рентгеновского зрения”, напоминающим суперспособности Супермена.

Ученые из Техасского университета в Далласе и Сеульского национального университета, вдохновленные комиксами о Человеке из Стали, создали уникальную систему визуализации. Благодаря микрочипу и специальным алгоритмам обработки данных, технология позволяет буквально “заглядывать” внутрь упаковок и даже сквозь стены, не причиняя вреда.

“Эта технология подобна рентгеновскому зрению Супермена”, – сказал профессор электротехники UTD и директор Техасского центра аналогового совершенства (TxACE) Кеннет О. “Конечно, мы используем сигналы в диапазоне от 200 до 400 гигагерц вместо рентгеновских лучей, которые могут быть вредны”.

Технология была впервые продемонстрирована в 2022 году и стала результатом более 15 лет работы О и его команды. Чип излучает радиацию в терахерцовом (THz) диапазоне – это электромагнитное излучение с частотой от 0,1 до 10 THz. Эти волны, невидимые для человеческого глаза и считающиеся безопасными, имеют более высокую частоту, чем радиоволны и микроволны, но ниже, чем инфракрасное излучение.

В 2022 году О продемонстрировал, что лучи частотой 430 ГГц, производимые микрочипом, проходили через туман, пыль и другие препятствия, которые не могут пробить оптический свет. Они отражались от объектов и возвращались к микрочипу, где пиксели улавливали сигнал для создания изображения. Эта технология не полагалась на внешние линзы для улучшения четкости изображения. Чип был изготовлен с использованием комплементарной металло-оксидной полупроводниковой ( CMOS ) технологии, которая используется для производства современных потребительских процессоров, микросхем памяти и других цифровых устройств.

Технология CMOS оказалась доступным способом генерации и обнаружения терагерцовых сигналов, особенно на частотах около 200 ГГц и выше, что обеспечивает значительно лучшее разрешение изображений. Ученые усовершенствовали качество изображения своей модели 2022 года и сделали технологию достаточно компактной, чтобы она могла поместиться в небольшое устройство. Новый чип использовал матрицу из 1×3 CMOS пикселей с рабочей частотой 296 ГГц и был полностью безлинзовым решением.

“Мы разработали чип без линз или оптики, чтобы он мог быть интегрирован в мобильные устройства”, – пояснил Вуйеоль Чой, доцент кафедры электротехники и вычислительной техники Сеульского национального университета и один из авторов исследования. “Пиксели, создающие изображения путем обнаружения сигналов, отраженных от целевого объекта, имеют форму квадрата размером всего 0,5 мм, что примерно соответствует размеру песчинки”.

Технология была протестирована и смогла визуализировать различные объекты (USB-адаптер, лезвие, интегральную схему и пластиковую шайбу), покрытые картоном, с расстояния около одного сантиметра. Ученые намеренно сканировали объекты с такого близкого расстояния по соображениям безопасности и конфиденциальности, чтобы предотвратить возможность использования устройства злоумышленниками для сканирования содержимого сумок и личных вещей. Однако исследователи планируют создать следующую версию, способную захватывать изображения с расстояния до 12,7 см (около 5 дюймов).

“Потребовалось 15 лет исследований, чтобы улучшить производительность пикселей в 100 миллионов раз. В сочетании с методами цифровой обработки сигналов это позволило осуществить данную демонстрацию”, – отметил Брайан Гинсбург, директор исследований радиочастот и высокоскоростных систем в лабораториях Kilby Labs компании Texas Instruments. “Наша прорывная технология демонстрирует огромный потенциал терагерцовой визуализации”.

Ученые видят множество применений своего микрочипа в смартфонах – от поиска деревянных балок за стенами и выявления трещин в трубах до сканирования содержимого конвертов и упаковок. Кроме того, рассматривается возможность использования этой технологии в медицинских целях.

Исследования поддерживались программой Texas Instruments Foundational Technology Research Program в области миллиметровых волн и высокочастотных микросистем, а также программой Samsung Global Research Outreach.

Исследование было опубликовано в журнале IEEE Transactions on Terahertz Science and Technology .

Public Release.